Biocomposites

Zinc oxide nanostructures and stearic acid as surface modifiers for flax fabrics in polylactic acid biocomposites

Different surface treatments including mercerization, stearic acid and growth of zinc oxide nanorods as well as their combinations were exploited to address their effects on the properties of green composites based on polylactic acid (PLA) and flax fabrics. The resulting fabrics were morphologically (SEM), crystallographically (XRD) and thermally (TGA) characterized, showing no significant changes with respect to the untreated samples. In contrast, tensile and flexural properties of composites produced by compression moulding were significantly influenced.

Surface modification of basalt fibres with ZnO nanorods and its effect on thermal and mechanical properties of pla-based composites

The composites based on basalt fibres and poly(lactic acid) (PLA) show promising applications in biomedical and automotive fields, but their mechanical performance is still largely hindered by poor interfacial properties. Zinc oxide nanorods have been successfully used to tune the PLA/basalt fibre interface by growing them on commercially available basalt fabrics. The hierarchical fibres significantly enhanced the mechanical properties of PLA-based composites, especially their flexural strength and stiffness.

Recycling coffee silverskin in sustainable composites based on a poly(butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix

This work investigates the feasibility of using coffee silverskin (CSS), one of the most abundant coffee waste products, as a reinforcing agent in biopolymer based composites. The chemical composition, antioxidant activity and morphology of CSS were studied by specific chemical essays and scanning electron microscopy, whilst the thermal stability and the functional groups available on the surface were investigated by thermogravimetric analysis and infrared spectroscopy, respectively.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma