biofuels

Integrated microalgae biomass production and olive mill wastewater biodegradation: optimization of the wastewater supply strategy

Olive mill wastewater (OMW) was supplied to Scenedesmus sp. cultures to simultaneously achieve biomass production and wastewater biodegradation. Two OMW supply strategies were implemented to prevent the reduced growth performances that are attained, compared to photoautotrophic cultivation, when OMW is supplied at the beginning of cultivation (batch strategy). A fed-batch strategy including the gradual OMW supply yielded a biomass production equal to 0.86 g/L, while 1.4 g/L was attained by a two-stage strategy including OMW addition during nitrogen-starvation.

New strategies enhancing feasibility of microalgal cultivations

Biotechnologic processes based on microalgae cultivations have had an increasing interest from the early 2000s. Microalgae are microorganisms able to produce and accumulate a large variety of industrially relevant compounds starting from renewable and cheap resources. However, 3–10 € per kg of dry biomass is the minimum cost for microalgae biomass production that has been estimated by different studies published in 2016. This high cost restricts industrial applications only to the production of high-value products.

Bioelectromethanogenesis reaction in a tubular Microbial Electrolysis Cell (MEC) for biogas upgrading

The utilization of a pilot scale tubular Microbial Electrolysis Cell (MEC), has been tested as an innovative biogas upgrading technology. The bioelectromethanogenesis reaction permits the reduction of the CO2 into CH4 by using a biocathode as electrons donor, while the electroactive oxidation of organic matter in the bioanode partially sustains the energy demand of the process. The MEC has been tested with a synthetic wastewater and biogas by using two different polarization strategies, i.e.

Algae-based biorefinery concept. An LCI analysis for a theoretical plant

Both micro and macro algae have a potential to be a valuable feedstock for biorefineries. The theoretical impact assessment of this kind of plant can be carried out through an LCA, which is a key tool in order to evaluate the potential environmental impact of a process throughout its entire life cycle. Hence, it is a priority to perform an LCI with the aim of gathering all the data and simulating all the unit process of a theoretical biorefinery. The Inventory ensures to obtain a simple and immediate way to represent several aspects of a biorefinery, e.g.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma