bioprinting

3D Bioprinted hydrogel model incorporating β-tricalcium phosphate for calcified cartilage tissue engineering

One promising strategy to reconstruct osteochondral defects relies on 3D bioprinted three-zonal structures comprised of hyaline cartilage, calcified cartilage, and subchondral bone. So far, several studies have pursued the regeneration of either hyaline cartilage or bone in vitro while – despite its key role in the osteochondral region – only few of them have targeted the calcified layer.

3D Tissue Modelling of Skeletal Muscle Tissue

Skeletal muscle tissue exhibits endogenous ability to regenerate. However, the self-repair mechanism is restricted only to small damages. The increasing number of extensive injuries of skeletal muscles due to various accidents, more active life-style or cancer resection, combined with the shortcomings of the conventional treatment procedures, creates demand for new, more advanced solutions. Muscle tissue engineering (TE) appears as a promising strategy for fabrication of tissue substitutes from biomaterials, cells and bioactive factors, alone or combined.

Microfluidic bioprinting of heterogeneous 3D tissue constructs

3D bioprinting is an emerging field that can be described as a robotic additive biofabrication technology that has the potential to build tissues or organs. In general, bioprinting uses a computer controlled printing device to accurately deposit cells and biomaterials into precise architectures with the goal of creating on demand organized multicellular tissue structures and eventually intra-organ vascular networks. The latter, in turn, will promote the host-integration of the engineered tissue/organ in situ once implanted. Existing biofabrication techniques still lay behind this goal.

Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities

Three-dimensional (3D) printing of biological material, or 3D bioprinting, is a rapidly expanding field with interesting applications in tissue engineering and regenerative medicine. Bioprinters use cells and biocompatible materials as an ink (bioink) to build 3D structures representative of organs and tissues, in a controlled manner and with micrometric resolution. Human embryonic (hESCs) and induced (hiPSCs) pluripotent stem cells are ideally able to provide all cell types found in the human body.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma