Numerical study of the MHD flow around a bounded heating cylinder: heat transfer and pressure drops
This work studies numerically the flow around an electrically insulated heating cylinder, bounded by walls of non-uniform electrical conductivity and subjected to a transversal magnetic field, with non-null components in the toroidal and poloidal directions. The configuration is representative of a typical breeding blanket segment in tokamak fusion reactors: to minimize magnetohydrodynamic (MHD) pressure drops, the liquid metal can be employed just as tritium breeder, whereas a non-conductive secondary fluid is used as coolant.