blood proteins

Apixaban interacts with haemoglobin: effects on its plasma levels

The direct oral anticoagulant apixaban (APX), a strong factor Xa inhibitor, binds also to plasma proteins, especially albumin, and minimally to α 1 -acid glycoprotein. Although APX can cross the red cell membrane, due to its chemical structure, and could bind to haemoglobin (Hb), no investigation was performed on this possible phenomenon that could affect the APX plasma concentration and thus its pharmacokinetics and pharmacodynamics.

Human biomolecular corona of Liposomal Doxorubicin: the overlooked factor in anticancer drug delivery

More than 20 years after its approval by the Food and Drug Administration (FDA), liposomal doxorubicin (DOX) is still the drug of choice for the treatment of breast cancer and other conditions such as ovarian cancer and multiple myeloma. Yet, despite the efforts, liposomal DOX did not satisfy expectations at the clinical level. When liposomal drugs enter a physiological environment, their surface gets coated by a dynamic biomolecular corona (BC).

Interplay of protein corona and immune cells controls blood residency of liposomes

In vivo liposomes, like other types of nanoparticles, acquire a totally new ‘biological identity’ due to the formation of a biomolecular coating known as the protein corona that depends on and modifies the liposomes’ synthetic identity. The liposome–protein corona is a dynamic interface that regulates the interaction of liposomes with the physiological environment. Here we show that the biological identity of liposomes is clearly linked to their sequestration from peripheral blood mononuclear cells (PBMCs) of healthy donors that ultimately leads to removal from the bloodstream.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma