caspase-3

Long chain alkyl esters of hydroxycinnamic acids as promising anticancer agents: selective induction of apoptosis in cancer cells

Cancer is the major cause of morbidity and mortality worldwide. Hydroxycinnamic acids (HCAs) are naturally occurring compounds and their alkyl esters may possess enhanced biological activities. We evaluated C4, C14, C16, and C18 alkyl esters of p-coumaric, ferulic, sinapic, and caffeic acids (19 compounds) for their cytotoxic activity against four human cancer cells and also examined their effect on cell cycle alteration and apoptosis induction.

Mitotic cell death induction by targeting the mitotic spindle with tubulin-inhibitory indole derivative molecules

Tubulin-targeting molecules are widely used cancer therapeutic agents. They inhibit microtubule-based structures, including the mitotic spindle, ultimately preventing cell division. The final fates of microtubule-inhibited cells are however often heterogeneous and difficult to predict. While recent work has provided insight into the cell response to inhibitors of microtubule dynamics (taxanes), the cell response to tubulin polymerization inhibitors remains less well characterized. Arylthioindoles (ATIs) are recently developed tubulin inhibitors.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma