Cations

Insights into the release mechanism of astrocytic glutamate evoking in neurons NMDA receptor-mediated slow depolarizing inward currents

The gliotransmitter glutamate in different brain regions modulates neuronal excitability and synaptic transmission through a variety of mechanisms. Among the hallmarks of astrocytic glutamate release are the slow depolarizing inward currents (SICs) in neurons mediated by N-methyl-d-aspartate receptor activation. Different stimuli that evoke Ca 2+ elevations in astrocytes induce neuronal SICs suggesting a Ca 2+ -dependent exocytotic glutamate release mechanism of SIC generation.

Homer1 scaffold proteins govern Ca2+ dynamics in normal and reactive astrocytes

In astrocytes, the intracellular calcium (Ca2+) signaling mediated by activation of metabotropic glutamate receptor 5 (mGlu5) is crucially involved in the modulation of many aspects of brain physiology, including gliotransmission. Here, we find that the mGlu5-mediated Ca2+ signaling leading to release of glutamate is governed by mGlu5 interaction with Homer1 scaffolding proteins. We show that the long splice variants Homer1b/c are expressed in astrocytic processes, where they cluster with mGlu5 at sites displaying intense local Ca2+ activity.

Bile acid derivative-based catanionic mixtures: versatile tools for superficial charge modulation of supramolecular lamellae and nanotubes

Self-assembled structures formed by mixtures of cationic and anionic surfactants are interesting tools for applications requiring interactions with charged particles and molecules. Nevertheless, they present instability close to the equimolar composition and poor morphological versatility, which is generally restricted to vesicles and micelles. Against this general trend, we report on bile salt derivative based catanionic mixtures assembling in tubules and lamellae depending on the mixture composition.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma