cell membrane

Technological and theoretical aspects for testing electroporation on liposomes

Recently, the use of nanometer liposomes as nanocarriers in drug delivery systems mediated by nanoelectroporation has been proposed. This technique takes advantage of the possibility of simultaneously electroporating liposomes and cell membrane with 10-nanosecond pulsed electric fields (nsPEF) facilitating the release of the drug from the liposomes and at the same time its uptake by the cells. In this paper the design and characterization of a 10 nsPEF exposure system is presented, for liposomes electroporation purposes.

Evidences of plasma membrane-mediated ROS generation upon ELF exposure in neuroblastoma cells supported by a computational multiscale approach

Background: Molecular mechanisms of interaction between cells and extremely low frequency magnetic fields (ELF-MFs) still represent a matter of scientific debate. In this paper, to identify the possible primary source of oxidative stress induced by ELF-MF in SH-SY5Y human neuroblastoma cells, we estimated the induced electric field and current density at the cell level. Methods: We followed a computational multiscale approach, estimating the local electric field and current density from the whole sample down to the single cell level.

Cancellation of nerve excitation by the reversal of nanosecond stimulus polarity and its relevance to the gating time of sodium channels

The initiation of action potentials (APs) by membrane depolarization occurs after a brief vulnerability period, during which excitation can be abolished by the reversal of the stimulus polarity. This vulnerability period is determined by the time needed for gating of voltage-gated sodium channels (VGSC). We compared nerve excitation by ultra-short uni- and bipolar stimuli to define the time frame of bipolar cancellation and of AP initiation.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma