Centromere

Repetitive elements contribute to the diversity and evolution of centromeres in the fungal genus Verticillium

Centromeres are chromosomal regions that are crucial for chromosome segregation during mitosis and meiosis, and failed centromere formation can contribute to chromosomal anomalies. Despite this conserved function, centromeres differ significantly between and even within species. Thus far, systematic studies into the organization and evolution of fungal centromeres remain scarce. In this study, we identified the centromeres in each of the 10 species of the fungal genus Verticillium and characterized their organization and evolution.

A role of the Trx-G complex in Cid/CENP-A deposition at Drosophila melanogaster centromeres

Centromeres are epigenetically determined chromatin structures that specify the assembly site of the kinetochore, the multiprotein machinery that binds microtubules and mediates chromosome segregation during mitosis and meiosis. The centromeric protein A (CENP-A) and its Drosophila orthologue centromere identifier (Cid) are H3 histone variants that replace the canonical H3 histone in centromeric nucleosomes of eukaryotes. CENP-A/Cid is required for recruitment of other centromere and kinetochore proteins and its deficiency disrupts chromosome segregation.

Repetitive fragile sites: Centromere satellite DNA as a source of genome instability in human diseases

Maintenance of an intact genome is essential for cellular and organismal homeostasis. The centromere is a specialized chromosomal locus required for faithful genome inheritance at each round of cell division. Human centromeres are composed of large tandem arrays of repetitive alpha-satellite DNA, which are often sites of aberrant rearrangements that may lead to chromosome fusions and genetic abnormalities.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma