chagas disease

On the intrinsic reactivity of highly potent trypanocidal cruzain inhibitors

The cysteine protease cruzipain is considered to be a validated target for therapeutic intervention in the treatment of Chagas disease. Hence, peptidomimetic cruzipain inhibitors having a reactive group (known as warhead) are subject to continuous studies to discover novel antichagasic compounds. Here, we evaluated how different warheads for a set of structurally similar related compounds could inhibit the activity of cruzipain and, ultimately, their trypanocidal effect.

Molecular design aided by random forests and synthesis of potent trypanocidal agents as cruzain inhibitors for Chagas disease treatment

Cruzain is an established target for the identification of novel trypanocidal agents, but how good are in vitro/in vivo correlations? This work describes the development of a random forests model for the prediction of the bioavailability of cruzain inhibitors that are Trypanosoma cruzi killers. Some common properties that characterize drug-likeness are poorly represented in many established cruzain inhibitors. This correlates with the evidence that many high-affinity cruzain inhibitors are not trypanocidal agents against T. cruzi.

Biological evaluation and structure-activity relationships of imidazole-based compounds as antiprotozoal agents

We discovered a series of azole antifungal compounds as effective antiprotozoal agents. They displayed promising inhibitory activities within the micromolar-submicromolar range against P. falciparum, L. donovani, and T. b. rhodesiense. Moreover, most of such compounds showed excellent nanomolar IC50against T. cruzi, showing also very low cytotoxicity. Discussion of structure-activity relationships and biological data for these compounds are provided against the different parasites. To assess the mechanism of action against T.

Assessment of the cruzain cysteine protease reversible and Irreversible covalent inhibition mechanism

Reversible and irreversible covalent ligands are advanced cysteine protease inhibitors in the drug development pipeline. K777 is an irreversible inhibitor of cruzain, a necessary enzyme for the survival of the Trypanosoma cruzi (T. cruzi) parasite, the causative agent of Chagas disease. Despite their importance, irreversible covalent inhibitors are still often avoided due to the risk of adverse effects. Herein, we replaced the K777 vinyl sulfone group with a nitrile moiety to obtain a reversible covalent inhibitor (Neq0682) of cysteine protease.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma