chiral

Nano-liquid chromatography for enantiomers separation of baclofen by using vancomycin silica stationary phase

The chiral separation of baclofen (Bac) was obtained by nano-liquid chromatography tandem mass spectrometry (nano-LC–MS/MS) using a 100 μm I.D. fused silica capillary column packed with silica particles chemically modified with vancomycin. Various experimental parameters, such as composition (buffer concentration, water content, organic modifier) and pH of the mobile phase and sample solvent were investigated for method optimization. In order to increase the sensitivity an on-column focusing procedure was applied.

Analysis of enantiomers in products of food interest

The separation of enantiomers has been started in the past and continues to be a topic of great interest in various fields of research, mainly because these compounds could be involved in biological processes such as, for example, those related to human health. Great attention has been devoted to studies for the analysis of enantiomers present in food products in order to assess authenticity and safety.

Enantioseparation of tryptophan and its unnatural derivatives by nano-LC on CSP-teicoplanin silica based

This work deals with the potentiality of nano liquid chromatography (Nano-LC) for the chiral separation of racemic mixture of tryptophan and some selected derivatives by using 100 µm i.d. fused silica capillary packed with teicoplanin bonded to 5 µm diol silica stationary phase. The experiments were carried out by using a cheap and laboratory-assembled nano-LC–UV system. Elution was done in an isocratic mode using a polar organic mobile phase.

Angular distribution of ion products in the double photoionization of propylene oxide

A photoelectron-photoion-photoion coincidence technique, using an ion imaging detector and tunable synchrotron radiation in the 18.0-37.0 eV photon energy range, inducing the ejection of molecular valence electrons, has been applied to study the double ionization of the propylene oxide, a simple prototype chiral molecule. The experiment performed at the Elettra Synchrotron Facility (Trieste, Italy) allowed to determine angular distributions for ions produced by the two-body dissociation reactions following the Coulomb explosion of the intermediate (C3H6O)(2+) molecular dication.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma