circRNA

Modulation of circRNA Metabolism by m6A Modification

N6-methyladenosine (m6A) is an RNA modification well-known for its contribution to different processes controlling RNA metabolism, including splicing, stability, and translation of mRNA. Conversely, the role of m6A on the biogenesis and function of circular RNAs (circRNAs) has yet to be addressed. circRNAs belong to a class of covalently closed transcripts produced via a back-splicing reaction whereby a downstream 5' splice donor site fuses to an upstream 3' splice acceptor site.

The Secret Garden of Neuronal circRNAs

High-throughput transcriptomic profiling approaches have revealed that circular RNAs (circRNAs) are important transcriptional gene products, identified across a broad range of organisms throughout the eukaryotic tree of life. In the nervous system, they are particularly abundant, developmentally regulated, region-specific, and enriched in genes for neuronal proteins and synaptic factors. These features suggested that circRNAs are key components of an important layer of neuronal gene expression regulation, with known and anticipated functions.

The Noncoding side of cardiac differentiation and regeneration

Large scale projects such as FANTOM and ENCODE, led to a revolution in our comprehension of the mammalian transcriptomes by revealing that ~53% of the produced RNAs do not encode for proteins. These transcripts, defined as noncoding RNAs (ncRNAs), constitute a heterogeneous group of molecules which can be categorized in two main classes, namely small and long, according to their length. In animals, the first class includes Piwi-interacting RNAs (piRNAs), small interfering RNAs (siRNAs) and microRNAs (miRNAs).

Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis

Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and still largely unknown functions. Their biogenesis, which proceeds via a back-splicing reaction, is fairly well characterized, whereas their role in the modulation of physiologically relevant processes is still unclear. Here we performed expression profiling of circRNAs during in vitro differentiation of murine and human myoblasts, and we identified conserved species regulated in myogenesis and altered in Duchenne muscular dystrophy.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma