CMB

A numerical investigation on the high‐frequency geometry of spherical random eigenfunctions

A lot of attention has been drawn over the last few years by the investigation of the geometry of spherical random eigenfunctions (random spherical harmonics) in the high‐frequency regime, that is, for diverging eigenvalues. In this paper, we present a review of these results and we collect for the first time a comprehensive numerical investigation, focussing on particular on the behavior of Lipschitz‐Killing curvatures/Minkowski functionals (i.e., the area, the boundary length, and the Euler‐Poincaré characteristic of excursion sets) and on critical points.

Optical modelling and analysis of the Q and U bolometric interferometer for cosmology

Remnant radiation from the early universe, known as the Cosmic Microwave Background (CMB), has been redshifted and cooled, and today has a blackbody spectrum peaking at millimetre wavelengths. The QUBIC (Q&U Bolometric Interferometer for Cosmology) instrument is designed to map the very faint polaristion structure in the CMB. QUBIC is based on the novel concept of bolometric interferometry in conjunction with synthetic imaging. It will have a large array of input feedhorns, which creates a large number of interferometric baselines.

Sunyaev Zel'dovich study of filamentary structures between galaxy clusters

The Sunyaev Zel'dovich effect measurement of the inter-cluster region between galaxy clusters would be fundamental for the study of filamentary structures and missing baryons in our Universe. We argue that a bolometric camera observing at 3mm coupled to a 50-100m class radio telescope is the ideal instrument to disentangle different scenarios.

Balloon-borne Cosmic Microwave Background experiments

Stratospheric balloon experiments play a unique role in current Cosmic Microwave Background (CMB) studies. CMB research has entered a precision phase, harvesting the detailed properties of its anisotropy, polarization and spectrum, at incredible precision levels. These measurements, however, require careful monitoring and subtraction of local backgrounds, produced by the earth atmosphere and the interstellar medium.

QUBIC: Using NbSi TESs with a Bolometric Interferometer to Characterize the Polarization of the CMB

Q & U Bolometric Interferometer for Cosmology (QUBIC) is an international ground-based experiment dedicated in the measurement of the polarized fluctuations of the Cosmic Microwave Background. It is based on bolometric interferometry, an original detection technique which combines the immunity to systematic effects of an interferometer with the sensitivity of low-temperature incoherent detectors. QUBIC will be deployed in Argentina, at the Alto Chorrillos mountain site near San Antonio de los Cobres, in the Salta Province.

Simulations and performance of the QUBIC optical beam combiner

QUBIC, the Q & U Bolometric Interferometer for Cosmology, is a novel ground-based instrument that aims to measure the extremely faint B-mode polarisation anisotropy of the cosmic microwave background at intermediate angular scales (multipoles of o-= 30-200). Primordial B-modes are a key prediction of Inflation as they can only be produced by gravitational waves in the very early universe. To achieve this goal, QUBIC will use bolometric interferometry, a technique that combines the sensitivity of an imager with the immunity to systematic effects of an interferometer.

QUBIC: The Q and U bolometric interferometer for cosmology

QUBIC, the Q & U Bolometric Interferometer for Cosmology, is a novel ground-based instrument that has been designed to measure the extremely faint B-mode polarisation anisotropy of the cosmic microwave background at intermediate angular scales (multipoles of o-= 30-200). Primordial B-modes are a key prediction of Inflation as they can only be produced by gravitational waves in the very early universe. To achieve this goal, QUBIC will use bolometric interferometry, a technique that combines the sensitivity of an imager with the systematic error control of an interferometer.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma