Granular computing techniques for bioinformatics pattern recognition problems in non-metric spaces
Computational intelligence and pattern recognition techniques are gaining more and more attention as the main computing tools in bioinformatics applications. This is due to the fact that biology by definition, deals with complex systems and that computational intelligence can be considered as an effective approach when facing the general problem of complex systems modelling. Moreover, most data available on shared databases are represented by sequences and graphs, thus demanding the definition of meaningful dissimilarity measures between patterns, which are often non-metric in nature.