computer architecture

Energy-efficient mission planning of UAVs for 5G coverage in rural zones

We target the problem of providing 5G network connectivity in rural zones by means of Base Stations (BSs) carried by Unmanned Aerial Vehicles (UAVs). Our goal is to schedule the UAVs missions to: i) limit the amount of energy consumed by each UAV, ii) ensure the coverage of selected zones over the territory, ii) decide where and when each UAV has to be recharged in a ground site, iii) deal with the amount of energy provided by Solar Panels (SPs) and batteries installed in each ground site.

How to measure energy consumption in machine learning algorithms

Machine learning algorithms are responsible for a significant amount of computations. These computations are increasing with the advancements in different machine learning fields. For example, fields such as deep learning require algorithms to run during weeks consuming vast amounts of energy. While there is a trend in optimizing machine learning algorithms for performance and energy consumption, still there is little knowledge on how to estimate an algorithm’s energy consumption.

The international race towards Exascale in Europe

In this article, we describe the context in which an international race towards Exascale computing has started. We cover the political and economic context and make a review of the recent history in high performance computing (HPC) architectures, with special emphasis on the recently announced European initiatives to reach Exascale computing in Europe. We conclude by describing current challenges and trends.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma