Convolutional neural network

An accuracy vs. complexity comparison of deep learning architectures for the detection of covid-19 disease

In parallel with the vast medical research on clinical treatment of COVID-19, an important action to have the disease completely under control is to carefully monitor the patients. What the detection of COVID-19 relies on most is the viral tests, however, the study of X-rays is helpful due to the ease of availability. There are various studies that employ Deep Learning (DL) paradigms, aiming at reinforcing the radiography-based recognition of lung infection by COVID-19.

Deep Neural Networks for Multivariate Prediction of Photovoltaic Power Time Series

The large-scale penetration of renewable energy sources is forcing the transition towards
the future electricity networks modeled on the smart grid paradigm, where energy clusters call for new
methodologies for the dynamic energy management of distributed energy resources and foster to form
partnerships and overcome integration barriers. The prediction of energy production of renewable energy
sources, in particular photovoltaic plants that suffer from being highly intermittent, is a fundamental tool

Ensemble of deep convolutional neural networks for automatic pavement crack detection and measurement

Automated pavement crack detection and measurement are important road issues. Agencies have to guarantee the improvement of road safety. Conventional crack detection and measurement algorithms can be extremely time-consuming and low efficiency. Therefore, recently, innovative algorithms have received increased attention from researchers. In this paper, we propose an ensemble of convolutional neural networks (without a pooling layer) based on probability fusion for automated pavement crack detection and measurement.

2-D convolutional deep neural network for multivariate energy time series prediction

A novel deep learning approach in proposed in this paper for multivariate prediction of energy time series. It is developed by using Convolutional Neural Network and Long Short-Term Memory models, in such a way that several correlated time series can be joined and filtered together considering the long term dependencies on the whole information. The learning scheme can be viewed as a stacked deep neural network where one or more layers are superposed, feeding their output in the sequent layer's input.

Deep region of interest and feature extraction models for palmprint verification using convolutional neural networks transfer learning

Palmprint verification is one of the most significant and popular approaches for personal authentication due to its high accuracy and efficiency. Using deep region of interest (ROI) and feature extraction models for palmprint verification, a novel approach is proposed where convolutional neural networks (CNNs) along with transfer learning are exploited. The extracted palmprint ROIs are fed to the final verification system, which is composed of two modules. These modules are (i) a pre-trained CNN architecture as a feature extractor and (ii) a machine learning classifier.

Joint feature fusion and optimization via deep discriminative model for mobile palmprint verification

With recent advances in pattern recognition and computer vision, mobile palmprint authentication has become an emerging field to provide better facilities and ubiquitous computing for scientific and commercial communities. To effectively streamline this issue, researchers focus on improving authentication performance by designing deep convolutional neural networks.

Deep learning for brain tumor segmentation

Brain tumors are considered to be one of the most lethal types of tumor. Accurate segmentation of brain MRI is an important task for the analysis of neurological diseases. The mortality rate of brain tumors is increasing according to World Health Organization. Detection at early stages of brain tumors can increase the expectation of the patients’ survival. Concerning artificial intelligence approaches for clinical diagnosis of brain tumors, there is an increasing interest in segmentation approaches based on deep learning because of its ability of self-learning over large amounts of data.

Brain tumor segmentation using 2D-UNET convolutional neural network

Gliomas are considered as the most aggressive and commonly found type among brain tumors. This leads to the shortage of lives of oncological patients. These tumors are mostly by magnetic resonance imaging (MRI) from which the segmentation becomes a big problem because of the large structural and spatial variability. In this study, we propose a 2D-UNET model based on convolutional neural networks (CNN). The model is trained, validated and tested on BRATS 2019 dataset. The average dice coefficient achieved is 0.9694.

A shape comparison reinforcement method based on feature extractors and F1-Score

Evaluating object segmentation is a topic of great interest for shape comparison techniques. In this work, ad-hoc metrics for a detailed segmentation analysis and a novel keypoint based method for comparing pairs of shapes are presented. As references, two different segmentation approaches were used: a handmade segmentation and an automatic one based on a Convolutional Neural Network (CNN). The proposed comparison approach consists of a combination between a keypoint extractor and an invariant scale shape identifier.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma