coupling impedance

Longitudinal and Quadrupolar Coupling Impedance of an Elliptical Vacuum Chamber With Finite Conductivity in Terms of Mathieu Functions

The resistive wall impedance of an elliptical vacuum chamber in the classical regime with infinite thickness is known analytically for ultra-relativistic beams by means of the Yokoya form factors. Starting from the longitudinal electric field of a point charge moving at arbitrary speed in an elliptical vacuum chamber, which we express in terms of Mathieu functions, in this paper we take into account the finite conductivity of the

A TM01 mode launcher with quadrupole field components cancellation for high brightness applications

The R&D of high gradient radiofrequency (RF) devices is aimed to develop innovative accelerating structures based on new manufacturing techniques and materials in order to construct devices operating with the highest accelerating gradient. Recent studies have shown a large increase in the maximum sustained RF surface electric fields in copper structures operating at cryogenic temperatures. These novel approaches allow significant performance improvements of RF photoinjectors. Indeed the operation at high surface fields results in considerable increase of electron beam brilliance.

Resistive wall impedance in elliptical multilayer vacuum chambers

The resistive wall impedance of a vacuum chamber with elliptic cross section is of particular interest for circular particle accelerators as well as for undulators in free electron lasers. By using the electric field of a point charge and of a small dipole moving at arbitrary speed in an elliptical vacuum chamber, expressed in terms of Mathieu functions, in this paper we take into account the finite conductivity of the beam pipe walls by means of the surface impedance, and evaluate the longitudinal and transverse driving and detuning impedances for any beam velocity.

Analysis on the mechanical effects induced by beam impedance heating on the HL-LHC target dump injection segmented (TDIS) absorber

The High Luminosity Large Hadron Collider (HL-LHC) Project at CERN calls for increasing beam brightness and intensity. In such a scenario, critical accelerator devices need to be redesigned and rebuilt. Impedance is among the design drivers, since its thermo-mechanical effects could

Impedance and Instability Studies in LEIR with Xenon

In 2017, the LEIR accelerator has been operated with Xe39+ beam for fixed target experiments in the SPS North Area. The different ion species, with respect to the standard Pb54+, allowed for additional comparative measurements of tune shift versus intensity at injection energy both in coasting and bunched beams. The fast transverse instability observed for high accumulated intensities has been as well characterized and additional observations relevant to impedance have been collected from longitudinal Schottky signal and BTF measurements.

A multi-physics approach to simulate the RF heating 3D power map induced by the proton beam in a beam intercepting device

The project High Luminosity Large Hadron Collider (HL-LHC) calls for a streaking beam intensity and brightness in the LHC machine. In such a scenario, beam-environment electromagnetic interactions are a crucial topic: they could lead to uneven power deposition in machine equipment. The resulting irregular temperature distribution would generate local thermal gradients, this would create mechanical stresses which could lead to cracks and premature failure of accelerator devices. This work presents a method to study this phenomenon by means of coupled electro-thermomechanical simulations.

Design of the new proton synchrotron booster absorber scraper (PSBAS) in the framework of the large hadron collider injection upgrade (LIU) project

The Large Hadron Collider (LHC) Injector Upgrade (LIU) Project at CERN calls for increasing beam intensity for the LHC accelerator chain. Some machine components will not survive the new beam characteristics and need to be rebuilt for the new challenging scenario. This is particularly true for beam intercepting devices (BIDs) such as dumps, collimators, and absorber/scrapers, which are directly exposed

Design of the Target Dump Injection Segmented (TDIS) in the framework of the High Luminosity Large Hadron Collider (HL-LHC) project

The High Luminosity Large Hadron Collider (HL-LHC) Project at CERN calls for increasing beam brightness and intensity. In this scenario, most equipment has to be redesigned and rebuilt. In particular, beam intercepting devices (such as dumps, collimators, absorbers and scrapers) have to withstand impact or scraping of the new intense HL-LHC beams without failure. Furthermore, minimizing the electromagnetic beam-device interactions is also a key design driver since they can lead to beam instabilities and excessive thermo-mechanical loading of devices.

Building the impedance model of a real machine

A reliable impedance model of a particle accelerator can be built by combining the beam coupling impedances of all the components. This is a necessary step to be able to evaluate the machine performance limitations, identify the main contributors in case an impedance reduction is required, and study the interaction with other mechanisms such as optics nonlinearities, transverse damper, noise, space charge, electron cloud, beam-beam (in a collider).

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma