deep neural network

A multimodal deep network for the reconstruction of T2W MR images

Multiple sclerosis is one of the most common chronic neurological diseases affecting the central nervous system. Lesions produced by the MS can be observed through two modalities of magnetic resonance (MR), known as T2W and FLAIR sequences, both providing useful information for formulating a diagnosis. However, long acquisition time makes the acquired MR image vulnerable to motion artifacts. This leads to the need of accelerating the execution of the MR analysis.

A multimodal dense U-Net for accelerating multiple sclerosis MRI

The clinical analysis of magnetic resonance (MR) can be accelerated through the undersampling in the k-space (Fourier domain). Deep learning techniques have been recently received considerable interest for accelerating MR imaging (MRI). In this paper, a deep learning method for accelerating MRI is presented, which is able to reconstruct undersampled MR images obtained by reducing the k-space data in the direction of the phase encoding.

Multivariate prediction in photovoltaic power plants by a stacked deep neural network

In this paper, a new approach on energy time series prediction is carried out. We propose a deep learning technique with the employment of specific neural network architectures: Convolutional Neural Network and Long Short-Term Memory network. The goal is to exploit the correlation between several time series, joining and filtering them together as to bring out the long-term dependencies among all the observations. We superpose many different functional layers, thus providing a stacked scheme that can result in a greater approximation capability.

A deep learning strategy for on-orbit servicing via space robotic manipulator

Autonomous robotic systems are currently being addressed as a critical element in the development of present and future on-orbit operations. Modern missions are calling for systems capable of reproducing human’s decision-making process thus enhancing their performance. Generally, space manipulators are mounted on a floating spacecraft in a microgravity environment, consequently leading to a mutual influence between the robotic arms and the platform dynamics, thus making the motion planning and control design more challenging than those of terrestrial robots.

A deep learning strategy for on‑orbit servicing via space robotic manipulator

Autonomous robotic systems are currently being addressed as a critical element in the development of present and future on-orbit operations. Modern missions are calling for systems capable of reproducing human’s decision-making process, thus enhancing their performance. Generally, space manipulators are mounted on a floating spacecraft in a microgravity environment, consequently leading to a mutual influence between the robotic arms and the platform dynamics, thus making the motion planning and control design more challenging than those of terrestrial robots.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma