deep neural networks

Query-guided end-to-end person search

Person search has recently gained attention as the novel task of finding a person, provided as a cropped sample, from a gallery of non-cropped images, whereby several other people are also visible. We believe that i. person detection and re-identification should be pursued in a joint optimization framework and that ii. the person search should leverage the query image extensively (e.g. emphasizing unique query patterns). However, so far, no prior art realizes this. We introduce a novel query-guided end-to-end person search network (QEEPS) to address both aspects.

On the use of deep recurrent neural networks for detecting audio spoofing attacks

Biometric security systems based on predefined speech sentences are extremely common nowadays, particularly in low-cost applications where the simplicity of the hardware involved is a great advantage. Audio spoofing verification is the problem of detecting whether a speech segment acquired from such a system is genuine, or whether it was synthesized or modified by a computer in order to make it sound like an authorized person.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma