delay model

Design of low-voltage power efficient frequency dividers in folded MOS current mode logic

In this paper we propose a methodology to design high-speed, power-efficient static frequency dividers based on the low-voltage Folded MOS Current Mode Logic (FMCML) approach. A modeling strategy to analyze the dependence of propagation delay and power consumption on the bias currents of the divide-by-2 (DIV2) cell is introduced. We demonstrate that the behavior of the FMCML DIV2 cell is different both from the one of the conventional MCML DFF (D-type Flip-Flop) and from FMCML DFF without a level shifter.

Delay models and design guidelines for MCML gates with resistor or PMOS load

In this paper we present propagation delay models for MCML gates with resistor- or triode-PMOS-based output I–V conversion. The dependence of the parasitic capacitance of triode PMOS devices is accurately evaluated for the first time in the literature. The proposed models are able to accurately predict the propagation delay as a function of the bias current ISS in different design scenarios which require different tradeoffs between speed, area and power efficiency.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma