Numbering-up strategies for microfluidics-assisted water treatment processes. Deterministic lateral displacement for the removal of bacteria and parasites as a case study
Microfluidic channels filled with spatially periodic arrays of impermeable obstacles have been proved successful for the size-based continuous separation of mesoscopic objects suspended in a buffer solution with unprecedented resolution. To date however, this technique - referred to as Deterministic Lateral Displacement (DLD) - has been implemented only for small volume samples, mainly for analytical purposes. In this article, we investigate the feasibility of the DLD separation technique for water purification from bacteria.