doxorubicin

The Combination of the M2 Muscarinic Receptor Agonist and Chemotherapy Affects Drug Resistance in Neuroblastoma Cells

One of the major limits of chemotherapy is depending on the ability of the cancer cells
to elude and adapt to dierent drugs. Recently, we demonstrated how the activation of the M2
muscarinic receptor could impair neuroblastoma cell proliferation. In the present paper, we investigate
the possible eects mediated by the preferential M2 receptor agonist arecaidine propargyl ester (APE)
on drug resistance in two neuroblastoma cell lines, SK-N-BE and SK-N-BE(2C), a sub-clone presenting

Potentiation of low-dose doxorubicin cytotoxicity by affecting p-glycoprotein through caryophyllane sesquiterpenes in hepg2 cells: an in vitro and in silico study

Doxorubicin represents a valuable choice for different cancers, although the severe side effects occurring at the high effective dose limits its clinical use. In the present study, potential strategies to potentiate low-dose doxorubicin efficacy, including a metronomic schedule, characterized by a short and repeated exposure to the anticancer drug, and the combination with the natural chemosensitizing sesquiterpenes β-caryophyllene and β-caryophyllene oxide, were assessed in human hepatoma HepG2 cells.

Pharmacological applications of Nrf2 inhibitors as potential antineoplastic drugs

Oxidative stress (OS) is associated with many diseases ranging from cancer to neurodegenerative disorders. Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is one of the most effective cytoprotective controller against OS. Modulation of Nrf2 pathway constitutes a remarkable strategy in the antineoplastic treatments. A big number of Nrf2-antioxidant response element activators have been screened for use as chemo-preventive drugs in OS associated diseases like cancer even though activation of Nrf2 happens in a variety of cancers.

5-Oxo-hexahydroquinoline derivatives as modulators of P-gp, MRP1 and BCRP transporters to overcome multidrug resistance in cancer cells

Multidrug resistance (MDR) in cancer cells is often associated with overexpression of ATP-binding cassette (ABC) transporters, including P-glycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 1 (MRP1/ABCC1) and breast cancer resistance protein (BCRP/ABCG2). Modulators of these transporters might be helpful in overcoming MDR. Moreover, exploiting collateral sensitivity (CS) could be another approach for efficient treatment of cancer.

?-caryophyllene and low-doses of doxorubicin against liver cancer cells: a “metronomic chemotherapy”

Cholangiocarcinoma and hepatocellular carcinoma are primary liver cancers, both representing a growing challenge due to their increasing morbidity and mortality. A “metronomic chemotherapy”, consisting of the repeated administration of low and/or continuous doses of anti-neoplastic drugs, represents an alternative approach to the standard chemotherapy [1]. Numerous natural substances exhibited in vitro chemosensitizing features: in particular, the natural sesquiterpene ?-caryophyllene (CRY) has been proved to increase the cytotoxicity of doxorubicin (DOXO) in leukemic cells [2].

Chemosensitizing properties of ?-caryophyllene and ?-caryophyllene oxide in combination with doxorubicin in human cancer cells

The natural sesquiterpenes ?-caryophyllene (CRY) and ?-caryophyllene oxide (CRYO) were evaluated for their potential chemosensitizing properties.
CRY and CRYO cytotoxicity was tested against the Caco-2, CCRF/CEM and CEM/ADR5000 human cancer cell lines. Furthermore, combination experiments were carried out in order to study the ability of the sesquiterpenes to increase doxorubicin cytotoxicity. The possible interference of CRY and CRYO with functionality of ATP-binding cassette (ABC)-transporters was also investigated by Rhodamine123 efflux assay.

A stereochemically driven supramolecular polymerization

Anthracyclines self-assemble in water into dimers. In the presence of sufficiently high salt (NaCl) concentrations, solutions of the antibiotic doxorubicin, but not those of the closely related molecules daunomycin and epirubicin, turn into gels barely compatible with the presence of small oligomers. The use of spectroscopic, scattering, imaging and computational techniques, allowed light to be shed on the self-assembly process that triggered doxorubicin gelification.

Sodium cholate/PEO-PPO-PEO triblock copolymer mixed micelles as stealth nanocarrier for doxorubicin

Polymer nanomaterials have received a great deal of interest as vehicles used for diagnostic and therapeutic agents [1]. The loading efficiency of a bile salt/block copolymer coformulation toward the fluorescent anticancer antibiotic doxorubicin has been studied. The coformulation is based on the anionic bile salt sodium cholate (NaC) and a nonionic triblock copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) denoted EO100-PO65-EO100 (F127) that itself forms micelles in water with a core composed mostly of PPO and a PEO corona.

A fluorescence study of the loading and time stability of doxorubicin in sodium cholate/PEO-PPO-PEO triblock copolymer mixed micelles

Hypothesis: Doxorubicin hydrochloride (DX) is one of the most powerful anticancer agents though its clinical use is impaired by severe undesired side effects. DX encapsulation in nanocarrier systems has been introduced as a mean to reduce its toxicity. Micelles of the nonionic triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (PEO-PPO-PEO), are very promising carrier systems. The positive charge of DX confines the drug to the hydrophilic corona region of the micelles.

Human biomolecular corona of Liposomal Doxorubicin: the overlooked factor in anticancer drug delivery

More than 20 years after its approval by the Food and Drug Administration (FDA), liposomal doxorubicin (DOX) is still the drug of choice for the treatment of breast cancer and other conditions such as ovarian cancer and multiple myeloma. Yet, despite the efforts, liposomal DOX did not satisfy expectations at the clinical level. When liposomal drugs enter a physiological environment, their surface gets coated by a dynamic biomolecular corona (BC).

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma