earth and planetary sciences (all)

Mapping and assessment of PM10 and O3 removal by woody vegetation at urban and regional level

This study is the follow up of the URBAN-MAES pilot implemented in the framework of the EnRoute project. The study aims at mapping and assessing the process of particulate matter (PM10) and tropospheric ozone (O3) removal by various forest and shrub ecosystems. Different policy levels and environmental contexts were considered, namely the Metropolitan city of Rome and, at a wider level, the Latium region.

Bistatic radar with large baseline for bio-geophysical parameter retrieval

This work aims at defining applications, products and user requirements, as well as the hardware and ground processing design of a companion satellite mission which shall carry aboard a 'passive' radar working in tandem with the Argentinian L-band radar developed by CONAE and denoted as SAOCOM. The primary objective (i.e., science driver) of the SAOCOM companion satellite mission (SAOCOM-CS) is forest tomography, which will be carried out by exploiting small baselines between active and passive systems (order of km) changing with time.

Triple collocation to assess classification accuracy without a ground truth in case of earthquake damage assessment

The assessment of satellite image classifications is usually carried out using a test sample assumed as the ground truth, from which a confusion matrix is derived. There are cases where the reference data, even those coming from a ground survey, are affected by errors and do not represent a reliable truth. In the field of geophysical parameter retrieval, the triple collocation (TC) technique is applied for validating remotely sensed products when the source of test data (e.g., ground data) does not represent a reliable reference.

Railway track condition assessment at network level by frequency domain analysis of GPR data

The railway track system is a crucial infrastructure for the transportation of people and goods in modern societies. With the increase in railway traffic, the availability of the track for monitoring and maintenance purposes is becoming significantly reduced. Therefore, continuous non-destructive monitoring tools for track diagnoses take on even greater importance.

Using vegetation dynamics to face the challenge of the conservation status assessment in semi-natural habitats

The conservation of semi-natural habitats represents a primary challenge for European nature conservation due to their great species diversity and their vulnerability to ongoing massive land-use changes. As these changes rapidly transform and phase out semi-natural habitats, conservation measures should be prompt and specifically focused on a sound assessment of the degree of conservation. Here we develop a methodological strategy for the assessment of the degree of conservation of semi-natural grasslands based on well-defined criteria rather than on expert opinion.

How geodesy can contribute to the understanding and prediction of earthquakes

Earthquakes cannot be predicted with precision, but algorithms exist for intermediate-term middle-range prediction of main shocks above a pre-assigned threshold, based on seismicity patterns. Few years ago, a first attempt was made in the framework of project SISMA, funded by Italian Space Agency, to jointly use seismological tools, like CN algorithm and scenario earthquakes, and geodetic methods and techniques, like GPS and SAR monitoring, to effectively constrain priority areas where to concentrate prevention and seismic risk mitigation.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma