electrochemical cell modeling

A novel neural networks ensemble approach for modeling electrochemical cells

Accurate modeling of electrochemical cells is nowadays mandatory for achieving effective upgrades in the fields of energetic efficiency and sustainable mobility. Indeed, these models are often used for performing accurate State-of-Charge (SoC) estimations in energy storage systems used in microgrids or powering pure electric and hybrid cars. To this aim, a novel neural networks ensemble approach for modeling electrochemical cells is proposed in this paper.

A white-box equivalent neural network circuit model for SoC estimation of electrochemical cells

Smart grids, microgrids, and pure electric powertrains are the key technologies for achieving the expected goals concerning the restraint of CO₂ emissions and global warming. In this context, an effective use of electrochemical energy storage systems (ESSs) is mandatory. In particular, accurate state of charge (SoC) estimations are helpful for improving the ESS performances. To this aim, developing accurate models of electrochemical cells is necessary for implementing effective SoC estimators. Therefore, a novel neural network modeling technique is proposed in this paper.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma