A novel neural networks ensemble approach for modeling electrochemical cells
Accurate modeling of electrochemical cells is nowadays mandatory for achieving effective upgrades in the fields of energetic efficiency and sustainable mobility. Indeed, these models are often used for performing accurate State-of-Charge (SoC) estimations in energy storage systems used in microgrids or powering pure electric and hybrid cars. To this aim, a novel neural networks ensemble approach for modeling electrochemical cells is proposed in this paper.