electronic structure

X-ray photoelectron spectroscopy for understanding molecular and hybrid solar cells

X-ray photoelectron spectroscopy is a powerful tool for the characterization of molecular and hybrid solar cells. This technique allows for atomic-level characterization of their components as well as for the determination of the electronic structure that governs the key conversion processes. In this chapter, we introduce the basic concepts of electronic structure in molecules and semiconducting materials followed by a description of the concepts of photoelectron spectroscopy and how they relate to electronic structure.

Comparison between silver and gold nanoparticles stabilized with negatively charged hydrophilic thiols: SR-XPS and SERS as probes for structural differences and similarities

The electronic and molecular structure, as well as the chemical nature of noble metal (silver, gold) nanoparticles (AgNPs, AuNPs) stabilized by the negatively charged hydrophilic organic thiol Sodium 3-mercapto-1-propanesulfonate (3-MPS) has been probed combining Synchrotron Radiation-induced X-ray Photoelectron Spectroscopy (SR-XPS) and Surface Enhanced Raman Spectroscopy (SERS).

Double and triple ionisation of isocyanic acid

Double and triple ionisation spectra of the reactive molecule isocyanic acid (HNCO) have been measured using multi-electron and ion coincidence techniques combined with synchrotron radiation and compared with high-level theoretical calculations. Vertical double ionisation at an energy of 32.8 ± 0.3 eV forms the 3A” ground state in which the HNCO2+ ion is long lived. The vertical triple ionisation energy is determined as 65 ± 1 eV.

Absence of superconductivity in iron polyhydrides at high pressures

Recently, C. M. Pépin et al. [Science 357, 382 (2017)] reported the formation of several new iron polyhydrides FeHx at pressures in the megabar range and spotted FeH5, which forms above 130 GPa, as a potential high-Tc superconductor because of an alleged layer of dense metallic hydrogen. Shortly after, two studies by A. Majumdar et al. [Phys. Rev. B 96, 201107 (2017)] and A. G. Kvashnin et al. [J. Phys. Chem. C 122, 4731 (2018)] based on ab initio Migdal-Eliashberg theory seemed to independently confirm such a conjecture.

Superconductivity in sodalite-like yttrium hydride clathrates

Motivated by the discovery of near-room-temperature superconductivity in the sodalite-like clathrate hydride
LaH10, we report ab initio calculations of the superconducting properties of two closely related hydrides
YH6 and YH10, for which an even higher Tc has been predicted. Using fully anisotropic Migdal-Eliashberg theory with Coulomb corrections, we find almost isotropic superconducting gaps, resulting from a uniform distribution of the coupling over states of both Y and H sublattices. The Coulomb screening is rather weak, resulting in a Morel-Anderson pseudopotential

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma