enantioseparation

Heterocyclic pharmacochemistry of new rhinovirus antiviral agents: a combined computational and experimental study

Rhinovirus (RV)?, member of the Enterovirus genus, is known to be involved in more than half of the common colds. Through advances in mol. biol., rhinoviruses have also been assocd. with exacerbations of chronic pulmonary diseases (e.g., asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis)?. In the current investigation, the authors develop a novel series of 4,?5-?dimethoxybenzyl derivs. that potently inhibits rhinovirus replication. Compd.

Design, synthesis, docking studies and monoamine oxidase inhibition of a small library of 1-acetyl- and 1-thiocarbamoyl-3,5-diphenyl-4,5-dihydro-(1h)-pyrazoles

New N-acetyl/N-thiocarbamoylpyrazoline derivatives were designed and synthesized in high yields to assess their inhibitory activity and selectivity against human monoamine oxidase A and B. The most important chiral compounds were separated into their single enantiomers and tested. The impact of the substituents at N1, C3 and C5 positions as well the influence of the configuration of the C5 on the biological activity were analyzed. Bulky aromatic groups at C5 were not tolerated. p-Prenyloxyaryl moiety at C3 oriented the selectivity toward the B isoform.

1,3-Dipolar Cycloaddition, HPLC Enantioseparation, and Docking Studies of Saccharin/Isoxazole and Saccharin/Isoxazoline Derivatives as Selective Carbonic Anhydrase IX and XII Inhibitors

Two series of saccharin/isoxazole and saccharin/isoxazoline hybrids were synthesized by 1,3-dipolar cycloaddition. The new compounds showed to be endowed with potent and selective inhibitory activity against the cancer-related human carbonic anhydrase (hCA) IX and XII isoforms in the nanomolar range, while no affinity was encountered for off-targets, such as hCA I and II. Successive enantioseparation on a milligram scale of the most representative compounds led to the discovery that (S)-isomers were more potent than their corresponding (R)-enantiomers.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma