enthalpy

Hydrogen bonding as a clustering agent in protic ionic liquids: like-charge vs opposite-charge dimer formation

The local structure of a series of homologous protic ionic liquids (PILs) is investigated using ab initio computations and ab initio-based molecular dynamics. The purpose of this work is to show that in PILs the network of hydrogen bonds may promote like-charge clustering between anionic species. We correlate the theoretical evidence of this possibility with viscosity experimental data. The homologous series of liquids is obtained by coupling choline with amino acid anions and varying the side chain.

Thermodynamic Study of Barium Cerate (BaCeO3) by Knudsen Effusion Mass Spectrometry

Abstract: The vaporization/decomposition of single-phase BaCeO3 samples was studied by the Knudsen Effusion Mass Spectrometry technique in the overall temperature range 1647–1923 K. The partial pressures of the gaseous species BaO(g), CeO2(g) and CeO(g) were monitored as a function of temperature. The formation of reduced form of cerium oxide as a product of the high temperature decomposition of BaCeO3 under the given experimental conditions was suggested by the low value of the measured CeO2(g)/CeO(g) pressure ratio and confirmed by the XRD spectra of the vaporization residues.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma