equilibrium region

Dynamics of capture orbits from libration region analysis

Low-energy trajectories take advantage of the mutual action of multiple celestial bodies on the spacecraft, and can conclude with ballistic capture about the arrival body, thus allowing significant savings in terms of propellant consumption, if compared to more traditional transfers. Because of the chaotic nature of multibody environments, the design of low-energy trajectories with given constraints can be complex and it is often obtained after a long, iterative, and eventually computationally expensive process.

Dynamics of three-dimensional capture orbits from libration region analysis

Low-energy trajectories take advantage of the mutual action of multiple celestial bodies on the spacecraft, and can conclude with ballistic capture about the arrival body, thus allowing significant savings in terms of propellant consumption, if compared to more traditional transfers. Because of the chaotic nature of multibody environments, the design of low-energy trajectories with given constraints can be complex and it is often obtained after a long, iterative, and eventually computationally expensive process.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma