ergodicity breaking

Solving the spherical p -spin model with the cavity method: Equivalence with the replica results

The spherical p-spin is a fundamental model for glassy physics, thanks to its analytical solution achievable via the replica method. Unfortunately, the replica method has some drawbacks: it is very hard to apply to diluted models and the assumptions beyond it are not immediately clear. Both drawbacks can be overcome by the use of the cavity method; however, this needs to be applied with care to spherical models.

Multiphase partitions of lattice random walks

Considering the dynamics of non-interacting particles randomly moving on a lattice, the occurrence of a discontinuous transition in the values of the lattice parameters (lattice spacing and hopping times) determines the uprisal of two lattice phases. In this letter we show that the hyperbolic hydrodynamic model obtained by enforcing the boundedness of lattice velocities derived in Giona M., Phys.

From simple lattice models to systems of interacting particles: the role of stochastic regularity in transport models

The concept of stochastic regularity in lattice models corresponds to the physical constraint that the lattice parameters defining particle stochastic motion (specifically, the lattice spacing and the hopping time) attain finite values. This assumption, that is physically well posed, as it corresponds to the existence of bounded mean free path and root mean square velocity, modifies the formulation of the classical hydrodynamic limit for lattice models of particle dynamics, transforming the resulting balance equations for the probability density function from parabolic to hyperbolic.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma