ERK

Survival pathways are differently affected by microgravity in normal and cancerous breast cells

Metazoan living cells exposed to microgravity undergo dramatic changes in morphological and biological properties, which ultimately lead to apoptosis and phenotype reprogramming. However, apoptosis can occur at very different rates depending on the experimental model, and in some cases, cells seem to be paradoxically protected from programmed cell death during weightlessness.

Histone deacetylase inhibitors VPA and TSA induce apoptosis and autophagy in pancreatic cancer cells

PURPOSE: Histone deacetylase inhibitors (HDACi) are anti-neoplastic agents that are known to affect the growth of different cancer types, but their underlying mechanisms are still incompletely understood. Here, we compared the effects of two HDACi, i.e., Trichostatin A (TSA) and Valproic Acid (VPA), on the induction of cell death and autophagy in pancreatic cancer-derived cells that exhibit a high metastatic capacity and carry KRAS/p53 double mutations.

Increase in motility and invasiveness of MCF7 cancer cells induced by nicotine is abolished by melatonin through inhibition of ERK phosphorylation

Through activation of the ERK pathway nicotine, in both normal MCF-10A and low malignant breast cancer cells (MCF7), promotes increased motility and invasiveness. Melatonin antagonizes both these effects by inhibiting almost completely ERK phosphorylation. As melatonin has no effect on not-stimulated cells, it is likely that melatonin can counteract ERK-activation only downstream of nicotine-induced activation.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma