EXAFS

Solubilization properties and structural characterization of dissociated HgO and HgCl2 in deep eutectic solvents

A synergic approach combining X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies together with quantum mechanical (QM) calculations on cluster models has been used to investigate the solvation properties of the HgCl2 salt and of HgO dissolved in deep eutectic solvents (DESs). Choline chloride (ChCl)-based DESs were prepared using different hydrogen bond donors, namely 1:2 mixtures of ChCl and either urea, acetylsalicylic acid (ASA) or sesamol (SES) and a 1:1 mixture of ChCl and pyrogallol (PYR).

Solvation of Co2+ ion in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid: A molecular dynamics and X-ray absorption study

The solvation of the Co2+ ion in the [C4mim][Tf2N] (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) room temperature ionic liquid (RTIL) has been studied from both a structural and thermodynamic point of view. Co K-edge X-ray absorption spectroscopy (XAS) data have been collected on a 0.1 M Co(Tf2N)2 solution in [C4mim][Tf2N] as well as on the metallic salt and classical MD simulations have been performed to obtain both structural and thermodynamic data.

Influence of counterions on the hydration structure of Lanthanide ions in dilute aqueous solutions

A synergic approach combining molecular dynamics (MD) simulations and X-ray absorption spectroscopy (XAS) has been used to investigate diluted (0.1 M) aqueous solutions of two lanthanide ions (Ln3+), namely, La3+ and Dy3+, with triflate, nitrate, and bis(trifluoromethylsulfonyl)imide (Tf2N-) as counterions. The different complexing ability of the three anions has been highlighted by the analysis of the MD simulations: Tf2N- does not form inner-sphere complexes, while a small amount of triflate coordinates both the La3+ and Dy3+ cations in their first solvation shell.

Direct Mechanistic Evidence for a Nonheme Complex Reaction through a Multivariate XAS Analysis

In this work, we propose a method to directly determine the mechanism of the reaction between the nonheme complex FeII(tris(2-pyridylmethyl)amine) ([FeII(TPA)(CH3CN)2]2+) and peracetic acid (AcOOH) in CH3CN, working at room temperature. A multivariate analysis is applied to the time-resolved coupled energy-dispersive X-ray absorption spectroscopy (EDXAS) reaction data, from which a set of spectral and concentration profiles for the reaction key species is derived. These "pure"extracted EDXAS spectra are then quantitatively characterized by full multiple scattering (MS) calculations.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma