Definition, existence, stability and uniqueness of the solution to a semilinear elliptic problem with a strong singularity at u = 0
In this paper we consider a semilinear elliptic equation with a strong singularity at $u=0$, namely
\begin{equation*}
\begin{cases}
\dys u\geq 0 & \mbox{in } \Omega,\\
\displaystyle - div \,A(x) D u = F(x,u)& \mbox{in} \; \Omega,\\
u = 0 & \mbox{on} \; \partial \Omega,\\
\end{cases}
\end{equation*}
with $F(x,s)$ a Carath\'eodory function such that
$$
0\leq F(x,s)\leq \frac{h(x)}{\Gamma(s)}\,\,\mbox{ a.e. } x\in\Omega,\, \forall s>0,
$$