explainable artificial intelligence

An ecology-based index for text embedding and classification

Natural language processing and text mining applications have gained a growing attention and diffusion in the computer science and machine learning communities. In this work, a new embedding scheme is proposed for solving text classification problems. The embedding scheme relies on a statistical assessment of relevant words within a corpus using a compound index originally proposed in ecology: this allows to spot relevant parts of the overall text (e.g., words) on the top of which the embedding is performed following a Granular Computing approach.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma