factor models

Asymptotic theory for spectral density estimates of general multivariate time series

We derive uniform convergence results of lag-window spectral density estimates for a general class of multivariate stationary processes represented by an arbitrary measurable function of iid innovations. Optimal rates of convergence, that hold as both the time series and the cross section dimensions diverge, are obtained under mild and easily verifiable conditions.

Testing beta-pricing models using large cross-sections

We propose a methodology for estimating and testing beta-pricing models when a large number of assets is available for investment but the number of time-series observations is fixed. We first consider the case of correctly specified models with constant risk premia, and then extend our framework to deal with time-varying risk premia, potentially misspecified models, firm characteristics, and unbalanced panels. We show that our large cross-sectional framework poses a serious challenge to common empirical findings regarding the validity of beta-pricing models.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma