fiber lasers

Random raman fiber laser based on a twin-core fiber with FBGs inscribed by femtosecond radiation

Narrowband Raman lasing in a polarization-maintaining two-core fiber (TCF) is demonstrated. Femtosecond point-by-point inscription of fiber Bragg gratings (FBGs) in individual cores produces a half-open cavity with random distributed feedback. The laser linewidth in the cavity with a single FBG inscribed in one core of the TCF reduced by ∼2 times with respect to the cavity with a fiber loop mirror. It is shown that the inscription of two FBGs in different cores leads to the formation of a Michelson-type interferometer, leading to the modulation of generation spectra near threshold.

Spatial beam self-cleaning in tapered Yb-doped GRIN multimode fiber with decelerating nonlinearity

We experimentally demonstrate spatial beam self-cleaning in an Yb-doped graded-index multimode fiber taper, both in passive and active configurations. The input laser beam at 1064 nm was injected for propagation from the small to the large core side of the taper, with laser diode pumping in a counterdirectional configuration. The Kerr effect permits to obtain high-beam quality amplification with no accompanying frequency conversions. As a result, our nonlinear taper amplifier may provide an important building block for multimode fiber lasers and amplifiers.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma