forward-looking GPR

Performance of free-space tomographic imaging approximation for shallow-buried target detection

Forward-looking ground penetrating radar (FL-GPR) is an emerging modality that permits standoff sensing of targets buried at shallow depths in the ground. Most FL-GPR imagery is obtained using free-space approximation, neglecting the presence of the air-to-ground interface and assuming the propagation as occurring in a homogeneous dielectric medium. In this paper, we compare the performance of the approximate free-space tomographic imaging with that of a tomographic algorithm which accounts for the presence of the actual halfspace geometry.

Coherence-factor-based rough surface clutter suppression for forward-looking GPR imaging

We present an enhanced imaging procedure for suppression of the rough surface clutter arising in forward-looking ground-penetrating radar (FL-GPR) applications. The procedure is based on a matched filtering formulation of microwave tomographic imaging, and employs coherence factor (CF) for clutter suppression. After tomographic reconstruction, the CF is first applied to generate a "coherence map" of the region in front of the FL-GPR system illuminated by the transmitting antennas.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma