four wave mixing

3D time-domain beam mapping for studying nonlinear dynamics in multimode optical fibers

Characterization of the complex spatiotemporal dynamics of optical beam propagation in nonlinear multimode fibers requires the development of advanced measurement methods, capable of capturing the real-time evolution of beam images. We present a new space–time mapping technique, permitting the direct detection, with picosecond temporal resolution, of the intensity from repetitive laser pulses over a grid of spatial samples from a magnified image of the output beam.

Coherent combining of self-cleaned multimode beams

A low intensity light beam emerges from a graded-index, highly multimode optical fibre with a speckled shape, while at higher intensity the Kerr nonlinearity may induce a spontaneous spatial self-cleaning of the beam. Here, we reveal that we can generate two self-cleaned beams with a mutual coherence large enough to produce a clear stable fringe pattern at the output of a nonlinear interferometer. The two beams are pumped by the same input laser, yet are self-cleaned into independent multimode fibres.

Nonlinear multimode fiber optics: recent advances

We start by providing an overview of the emerging field of nonlinear optics in multimode optical fibers [1]. These fibers provide a simple testbed for observing complex wave propagation dynamics, in analogy with other fields of physics ranging from two-dimensional hydrodynamic turbulence and Bose-Einstein condensation. In addition, nonlinear multimode optical fibers enable new methods for achieving the ultrafast, light-activated control of temporal, spatial and spectral degrees of freedom of intense, pulsed light beams, for a range of different technological applications.

Seeded intermodal four-wave mixing in a highly multimode fiber

We experimentally and theoretically investigate the process of seeded intermodal four-wave mixing in a graded-index multimode fiber, pumped in the normal dispersion regime. By using a fiber with a 100-μm core diameter, we generate a parametric sideband in the C-band (1530-1565 nm), hence allowing the use of an erbium-based laser to seed the mixing process. To limit nonlinear coupling between the pump and the seed to low-order fiber modes, the waist diameter of the pump beam is properly adjusted. We observe that the superimposed seed stimulates the generation of new spectral sidebands.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma