Fractional logistic equation

Solutions of fractional logistic equations by Euler's numbers

In this paper, we solve in the convergence set, the fractional logistic equation making use of Euler's numbers. To our knowledge, the answer is still an open question. The key point is that the coefficients can be connected with Euler's numbers, and then they can be explicitly given. The constrained of our approach is that the formula is not valid outside the convergence set. The idea of the proof consists to explore some analogies with logistic function and Euler's numbers, and then to generalize them in the fractional case.

Fractional SIS Epidemic Models

In this paper, we consider the fractional SIS (susceptible-infectious-susceptible) epidemic model (α-SIS model) in the case of constant population size. We provide a representation of the explicit solution to the fractional model and we illustrate the results by numerical schemes. A comparison with the limit case when the fractional order α converges to 1 (the SIS model) is also given. We analyze the effects of the fractional derivatives by comparing the SIS and the α-SIS models.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma