Free Electron Lasers

Status of the compactlight design study*

CompactLight (XLS) is an International Collaboration of 24 partners and 5 third parties, funded by the European Union through the Horizon 2020 Research and Innovation Programme. The main goal of the project, which started in January 2018 with a duration of 36 months, is the design of an hard X-ray FEL facility beyond today’s state of the art, using the latest concepts for bright electron photo-injectors, high-gradient accelerating structures, and innovative short-period undulators.

Compactlight design study

H2020 CompactLight Project aims at designing the next generation of compact hard X-Rays Free-Electron Lasers, relying on very high accelerating gradients and on novel undulator concepts. CompactLight intends to design a compact Hard X-ray FEL facility based on very high-gradient acceleration in the X band of frequencies, on a very bright photo injector, and on short-period/superconductive undulators to enable smaller electron beam energy.

Electromagnetic and beam dynamics studies for high gradient accelerators at terahertz frequencies

THz radiation is one of the most appealing portion of the electromagnetic spectrum in terms of multi-disciplinary use in basic science and technology. Beyond the numerous applications, a great interest is its potential for future, compact linear accelerators. Conventional radio-frequency accelerating structures operating at the S and C band can reach gradients up to 30 - 50MV/m, respectively; higher accelerating gradients, of the order of 100MV/m, have been obtained with X-band cavities.

Enhancing particle bunch-length measurements based on Radio Frequency Deflector by the use of focusing elements

A method to monitor the length of a particle bunch, based on the combination of a Radio Frequency Deflector (RFD) with magnetic focusing elements, is presented. With respect to state-of-the-art bunch length measurement, the additional focusing element allows to measure also the correlations between the longitudinal and transverse planes in terms of both position and divergence. Furthermore, the quadrupole-based focusing increases the input dynamic range of the measurement system (i.e. allows for a larger range of beam Twiss parameters at the entrance of the RFD).

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma