Gene Expression Regulation

Thyroid hormone regulates protease expression and activation of notch signaling in implantation and embryo development

A clinical association between thyroid dysfunction and pregnancy complications has been extensively reported, however the molecular mechanisms through which TH might regulate key-events of pregnancy have not been elucidated yet. In this respect, we performed in vivo studies in MMI- induced hypothyroid pregnant mice, evaluating the effect of hypothyroidism on the number of implantation sites, developing embryos/resorptions and pups per litter, at 4.5, 10.5, 18.5 days post coitum (dpc) and at birth.

The role of microRNAs in different types of thyroid carcinoma. A comprehensive analysis to find new miRNA supplementary therapies

The most common endocrine malignancy is thyroid cancer, and researchers have made a great deal of progress in deciphering its molecular mechanisms in the recent years. Many of molecular changes observed in thyroid cancer can be used as biomarkers for diagnosis, prognosis, and therapeutic targets for treatment. MicroRNAs (miRNAs) are important parts in biological and metabolic pathways such as regulation of developmental stages, signal transduction, cell maintenance, and differentiation. Therefore, their dysregulation can expose individuals to malignancies.

Tumor inhibition or tumor promotion? The duplicity of CXCR3 in cancer

Tumor tissue includes cancer cells and normal stromal cells such as vascular endothelial cells, connective tissue cells (cancer associated fibroblast, mesenchymal stem cell), and immune cells (tumor-infiltrating lymphocytes or TIL, dendritic cells, eosinophils, basophils, mast cells, tumor-associated macrophages or TAM, myeloid-derived suppressor cells or MDSC). Anti-tumor activity is mainly mediated by infiltration of NK cells, Th1 and CD8+ T cells, and correlates with expression of NK cell and T cell attracting chemokines.

Down-regulated miRs specifically correlate with non-cardial gastric cancers and Lauren's classification system

Background and Objectives: Gastric cancers are usually characterized using Lauren's classification into intestinal and diffuse types. We previously documented the down-modulation of miR31, miR148a, miR204, and miR375 in gastric cancers. We aimed this manuscript to investigate these miRs with the end-points of diagnosis, Lauren's classification and prognosis. Methods: A total of 117 resected non-cardial adenocarcinomas were evaluated for miRs' expressions. The performance of miRs’ expressions for cancer diagnosis was tested using ROC curves.

The lack of BTK does not impair monocytes and polymorphonuclear cells functions in X-linked agammaglobulinemia under treatment with intravenous immunoglobulin replacement

The lack of BTK in X-linked agammaglobulinemia (XLA) patients does not affect monocytes and polymorphonuclear cells (PMN) phenotype and functions. In this study, we show that XLA patients had an increased frequency of the intermediate monocytes subset and that BTK-deficient monocytes and PMN had a normal expression of receptors involved in the activation and cellular responses. We demonstrate that BTK is not required for migration, phagocytosis and the production of reactive oxygen species (ROS) following engagement of FC gamma receptors (Fc?R).

Ferric uptake regulator Fur is conditionally essential in Pseudomonas aeruginosa

In Pseudomonas aeruginosa, the ferric uptake regulator (Fur) protein controls both metabolism and virulence in response to iron availability. Differently from other bacteria, attempts to obtain fur deletion mutants of P. aeruginosa failed, leading to the assumption that Fur is an essential protein in this bacterium. By investigating a P. aeruginosa conditional fur mutant, we demonstrate that Fur is not essential for P. aeruginosa growth in liquid media, biofilm formation, and pathogenicity in an insect model of infection.

HDAC1 inhibition by MS-275 in mesothelial cells limits cellular invasion and promotes MMT reversal

Peritoneal fibrosis is a pathological alteration of the peritoneal membrane occurring in a variety of conditions including peritoneal dialysis (PD), post-surgery adhesions and peritoneal metastases. The acquisition of invasive and pro-fibrotic abilities by mesothelial cells (MCs) through induction of MMT, a cell-specific form of EMT, plays a main role in this process. Aim of this study was to evaluate possible effects of histone deacetylase (HDAC) inhibitors, key components of the epigenetic machinery, in counteracting MMT observed in MCs isolated from effluent of PD patients.

EBV and KSHV Infection Dysregulates Autophagy to Optimize Viral Replication, Prevent Immune Recognition and Promote Tumorigenesis

Autophagy is a catabolic process strongly involved in the immune response, and its dysregulation contributes to the onset of several diseases including cancer. The human oncogenic gammaherpesviruses, EpsteinBarr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), manipulate autophagy, either during the de novo infection or during the lytic reactivation, in naturally latently-infected lymphoma cells.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma