genetic association

Complete Sequence of the 22q11.2 Allele in 1,053 Subjects with 22q11.2 Deletion Syndrome Reveals Modifiers of Conotruncal Heart Defects

The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%–70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals.

Complete Sequence of the 22q11.2 Allele in 1,053 Subjects with 22q11.2 Deletion Syndrome Reveals Modifiers of Conotruncal Heart Defects

The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals.

Systems approach to identify common genes and pathways associated with response to selective serotonin reuptake inhibitors and major depression risk

Despite numerous studies on major depressive disorder (MDD) susceptibility, the precise underlying molecular mechanism has not been elucidated which restricts the development of etiology-based disease-modifying drug. Major depressive disorder treatment is still symptomatic and is the leading cause of (~30%) failure of the current antidepressant therapy. Here we comprehended the probable genes and pathways commonly associated with antidepressant response and MDD.

Neandertal introgression sheds light on modern human endocranial globularity

One of the features that distinguishes modern humans from our extinct relatives and ancestors is a globular shape of the braincase [1-4]. As the endocranium closely mirrors the outer shape of the brain, these differences might reflect altered neural architecture [4, 5]. However, in the absence of fossil brain tissue, the underlying neuroanatomical changes as well as their genetic bases remain elusive. To better understand the biological foundations of modern human endocranial shape, we turn to our closest extinct relatives: the Neandertals.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma