glycoproteins

Glycosylation profiling of selected proteins in cerebrospinal fluid from Alzheimer's disease and healthy subjects

Alteration of glycosylation has been observed in several diseases, such as cancer and neurodegenerative disorders. The study of changes in glycosylation could lead to a better understanding of mechanisms underlying these diseases and to the identification of new biomarkers. In this work the N-linked glycosylation of five target proteins in cerebrospinal fluid (CSF) from Alzheimer's disease (AD) patients and healthy controls have been analyzed for the first time.

Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint

Glycoproteins traversing the eukaryotic secretory pathway begin life in the endoplasmic reticulum (ER), where their folding is surveyed by the 170-kDa UDP-glucose:glycoprotein glucosyltransferase (UGGT). The enzyme acts as the single glycoprotein folding quality control checkpoint: it selectively reglucosylates misfolded glycoproteins, promotes their association with ER lectins and associated chaperones, and prevents premature secretion from the ER. UGGT has long resisted structural determination and sequence-based domain boundary prediction.

Impaired bone matrix glycoprotein pattern is associated with increased cardiometabolic risk profile in patients with type 2 diabetes mellitus

Purpose Osteopontin (OPN), osteoprotegerin (OPG) and osteocalcin (OC) are matrix glycoproteins which mediate bone mineralization; moreover, their effects on glucose/insulin homeostasis have recently been demonstrated. Higher circulating OPN and OPG levels have been associated with the presence of insulin resistance, atherosclerosis and coronary heart disease. No data are available on contextual changes of these markers in type 2 diabetes mellitus (T2DM). Therefore, aims of this study were to evaluate serum OPN, OPG and OC levels in T2DM patients and their clinical correlates.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma