GNSS
Source model for Sabancaya Volcano constrained by DInSAR and GNSS surface deformation observation
Sabancaya is the most active volcano of the Ampato-Sabancaya Volcanic Complex (ASVC) in southern Perú and has been erupting since 2016. The analysis of ascending and descending Sentinel-1 orbits (DInSAR) and Global Navigation Satellite System (GNSS) datasets from 2014 to 2019 imaged a radially symmetric inflating area, uplifting at a rate of 35 to 50 mm/yr and centered 5 km north of Sabancaya. The DInSAR and GNSS data were modeled independently. We inverted the DInSAR data to infer the location, depth, and volume change of the deformation source.
Editorial for the special issue: "High-precision GNSS: Methods, open problems and geoscience applications"
Integrated geomatic techniques for georeferencing and reconstructing the position of underground archaeological sites. The case study of the Augustus sundial (Rome)
A large part of the archaeological remains still to be discovered and excavated are not in remote and depopulated areas of the earth but are often beneath urban centres that have buried them with centuries of debris and later constructions. Excavating in these contexts is much more complex than digging in rural or sparsely inhabited areas because of the constraints imposed by existing buildings and infrastructure.
Use of the sensors of a latest generation mobile phone for the three-dimensional reconstruction of an archaeological monument: The survey of the Intihuatana stone in Machu Picchu (Peru')
The survey of archaeological monuments presents particular needs and difficulties. Such surveys must in fact be as complete, geometrically correct and accurately geo-referenced as possible. These needs, however, often face problems of difficult accessibility, the need for rapid timing and complex logistical conditions. The latest generation of mobile phones are equipped with ultra-high resolution cameras up to 100 megapixel.
Towards a plug&play solution for real-time precise positioning on mass-market devices
Despite pedestrian and vehicle navigation are the key applications enabled by the development of GNSS technology, the best approach to obtain accurate, reliable, continuous and robust PVT (Position-Velocity-Timing) solutions for this purpose has yet to be identified. The real limiting factor is the environment in which the users usually navigate: e.g. multipath effects and cycle slips in harsh urban environments strongly affect, respectively, pseudorange measurements and the continuity of carrier-phase observations.
Indoor height determination of the new absolute gravimetric station of L'Aquila
In this paper we describe all the field operations and the robust post-processing proceduresto determine the height of the new absolute gravimetric station purposely selected to belong to a new absolute gravimetric network and located in the Science Faculty of the L’Aquila University. This site has been realized indoor in the Geomagnetism laboratory, so that the height cannot be measured directly, but linking it to the GNSS antenna of AQUI benchmark located on the roof of the same building, by a classical topographic survey.
Ship targets feature extraction with GNSS-based passive radar via ISAR approaches. Preliminary experimental study
This paper focuses on a passive radar system based on Global Navigation Satellite Systems for maritime surveillance. While in the past the capability of this technology to detect ship targets at sea was proved, despite the low EIRP level of the GNSS, the objective of this paper is investigating the potential of the system to extract information concerning the detected target characteristics.
Low-power global navigation satellite system-enabled wireless sensor network for acoustic emission localisation in aerospace components
Structural health monitoring systems for the localisation of acoustic emission (AE) events have been developed in the past few years for aircraft components. However, these systems still require complex and heavy electrical wiring for each sensing device and sophisticated algorithms for the localisation of AE signals, which inevitably increases both weight and costs. This paper reports the creation of a low-power (few hundred mW) and low-weight (~30 g) global navigation satellite system-based wireless sensor network for the identification of AE events in aircraft structures.
Performance analysis of GPS+Galileo smartphone raw measurements
The main objective of this work is to investigate on precise positioning with a GPS and Galileo enabled chipset embedded in a smartphone. Sapienza research team, as member of the GSA GNSS Raw Measurements Task Force, with contribution by Politecnico di Milano, is investigating the area of real time precise positioning with single frequency, focusing on the benefits of multi-constellation GNSS and raw data quality provided by a smartphone. The analysis is carried out with code- and carrier-based algorithms in different scenarios.