graphene nanoplatelets (GNPs)

PFM characterization of PVDF nanocomposite films with enhanced piezoelectric response

The piezoelectric properties of PVDF mainly depend on its β-phase. In this work, we investigated through Piezoresponse Force Microscopy (PFM) the piezoelectric properties of PVDF composite films when we induce the formation of β-phase crystals adding a nanofiller, like graphene nanoplatelets (GNPs) or zinc-oxide nanorods (ZnO-NRs), but without applying any electrical poling. At first, we fabricated piezoelectric PVDF nanocomposite films by the solution casting method.

Broadband electromagnetic absorbing structures made of graphene/glass-fiber/epoxy composite

Radar-absorbing structures (RASs) with improved mechanical properties and subwavelength thickness are of particular interest for aerospace applications and electromagnetic (EM) interference control. This article proposes a new RAS, made of a graphene-filled lossy laminate (LL) with impedance adapter, having a total thickness less than 4 mm and a normalized absorption bandwidth of 84% in the frequency range 6-18 GHz.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma