Performance of free-space tomographic imaging approximation for shallow-buried target detection
Forward-looking ground penetrating radar (FL-GPR) is an emerging modality that permits standoff sensing of targets buried at shallow depths in the ground. Most FL-GPR imagery is obtained using free-space approximation, neglecting the presence of the air-to-ground interface and assuming the propagation as occurring in a homogeneous dielectric medium. In this paper, we compare the performance of the approximate free-space tomographic imaging with that of a tomographic algorithm which accounts for the presence of the actual halfspace geometry.