hedgehog pathway

The histone methyltransferase EZH2 as a druggable target in SHH medulloblastoma cancer stem cells

The histone methyltransferase EZH2 plays a role in maintenance of the stem component of cancer, and its overexpression and/or mutation typically drives tumor aggressiveness, drug resistance and patients' poor prognosis. In this study, we use mouse and human medulloblastoma stem-like cells belonging to the Sonic Hedgehog subgroup (SHH MB-SLCs) and demonstrate that genetic suppression of EZH2 reduces the level of its histone mark H3K27me3 and lowers proliferation and self-renewal.

Design, palladium-catalyzed synthesis, and biological investigation of 2-substituted 3-aroylquinolin-4(1H)-ones as inhibitors of the Hedgehog signaling pathway.

2-Substituted 3-aroylquinolin-4(1H)-ones, prepared through a palladium-catalyzed carbonylative cyclization of N-(2-iodoaryl)enaminones, proved to inhibit efficiently the Hedgehog pathway through direct antagonism of the wild-type and drug-resistant form of the Smoothened receptor. Notably, these compounds repressed the Hh-dependent growth events and the proliferation of tumor cells with aberrant activation of the Hh pathway, which plays a crucial role in development and tumorigenesis.

SMO inhibition modulates cellular plasticity and invasiveness in colorectal cancer

Colon Cancer (CC) is the fourth most frequently diagnosed tumor and the second leading cause of death in the USA. Abnormalities of Hedgehog pathway have been demonstrated in several types of human cancers, however the role of Hedgehog (Hh) in CC remain controversial. In this study, we analyzed the association between increased mRNA expression of GLI1 and GLI2, two Hh target genes, and CC survival and recurrence by gene expression microarray from a cohort of 382 CC patients. We found that patients with increased expression of GLI1 showed a statistically significant reduction in survival.

Itch/β-arrestin2-dependent non-proteolytic ubiquitylation of SuFu controls Hedgehog signalling and medulloblastoma tumorigenesis

Suppressor of Fused (SuFu), a tumour suppressor mutated in medulloblastoma, is a central player of Hh signalling, a pathway crucial for development and deregulated in cancer. Although the control of Gli transcription factors by SuFu is critical in Hh signalling, our understanding of the mechanism regulating this key event remains limited. Here, we show that the Itch/β-arrestin2 complex binds SuFu and induces its Lys63-linked polyubiquitylation without affecting its stability.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma