HeLa cells

AMBRA1 Controls Regulatory T-Cell Differentiation and Homeostasis Upstream of the FOXO3-FOXP3 Axis

Regulatory T cells (T reg ) are necessary to maintain immunological tolerance and are key players in the control of autoimmune disease susceptibility. Expression of the transcription factor FOXP3 is essential for differentiation of T reg cells and indispensable for their suppressive function. However, there is still a lack of knowledge about the mechanisms underlying its regulation. Here, we demonstrate that pro-autophagy protein AMBRA1 is also a key modulator of T cells, regulating the complex network that leads to human T reg differentiation and maintenance.

Biophysics and protein corona analysis of Janus cyclodextrin-DNA nanocomplexes. Efficient cellular transfection on cancer cells

The self-assembling processes underlining the capabilities of facially differentiated ("Janus") polycationic amphiphilic cyclodextrins (paCDs) as non-viral gene nanocarriers have been investigated by a pluridisciplinary approach. Three representative Janus paCDs bearing a common tetradecahexanoyl multitail domain at the secondary face and differing in the topology of the cluster of amino groups at the primary side were selected for this study. All of them compact pEGFP-C3 plasmid DNA and promote transfection in HeLa and MCF-7 cells, both in absence and in presence of human serum.

HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome

Mutations in CDCA7, the SNF2 family protein HELLS (LSH), or the DNA methyltransferase DNMT3b cause immunodeficiency–centro-meric instability–facial anomalies (ICF) syndrome. While it has been speculated that DNA methylation defects cause this disease, little is known about the molecular function of CDCA7 and its functional relationship to HELLS and DNMT3b.

Splicing factors Sf3A2 and Prp31 have direct roles in mitotic chromosome segregation

Several studies have shown that RNAi-mediated depletion of splicing factors (SFs) results in mitotic abnormalities. However, it is currently unclear whether these abnormalities reflect defective splicing of specific pre-mRNAs or a direct role of the SFs in mitosis. Here, we show that two highly conserved SFs, Sf3A2 and Prp31, are required for chromosome segregation in both Drosophila and human cells. Injections of anti-Sf3A2 and anti-Prp31 antibodies into Drosophila embryos disrupt mitotic division within 1 min, arguing strongly against a splicing-related mitotic function of these factors.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma