HIGGS

Reconstruction and identification of boosted di-tau systems in a search for Higgs boson pairs using 13 TeV proton-proton collision data in ATLAS

In this paper, a new technique for reconstructing and identifying hadronically decaying tau (+)tau (-) pairs with a large Lorentz boost, referred to as the di-tau tagger, is developed and used for the first time in the ATLAS experiment at the Large Hadron Collider. A benchmark di-tau tagging selection is employed in the search for resonant Higgs boson pair production, where one Higgs boson decays into a boosted bb pair and the other into a boosted tau (+)tau (-) pair, with two hadronically decaying tau -leptons in the final state.

Erratum to: Higgs boson production cross-section measurements and their EFT interpretation in the 4 ℓ decay channel at s = 13 TeV with the ATLAS detector (The European Physical Journal C, (2020), 80, 10, (957), 10.1140/epjc/s10052-020-8227-9)

In the published HTML version of this article, the affiliations of the authors of the National Research Nuclear University MEPhI, Moscow, Russia were unfortunately marked incorrectly.

Erratum to: Higgs boson production cross-section measurements and their EFT interpretation in the 4 ℓ decay channel at s = 13 TeV with the ATLAS detector (The European Physical Journal C, (2020), 80, 10, (957), 10.1140/epjc/s10052-020-8227-9)

In the published HTML version of this article, the affiliations of the authors of the National Research Nuclear University MEPhI, Moscow, Russia were unfortunately marked incorrectly.

Search for the standard model Higgs boson produced in association with top quarks and decaying into a b b pair in pp collisions at s =13 TeV with the ATLAS detector

A search for the standard model Higgs boson produced in association with a top-quark pair, t(t)overbarH, is presented. The analysis uses 36.1 fb(-1) of pp collision data at root s = 13 TeV collected with the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The search targets the H -> b(b)overbar decay mode. The selected events contain either one or two electrons or muons from the top-quark decays, and are then categorized according to the number of jets and how likely these are to contain b-hadrons.

Search for long-lived neutral particles in pp collisions at root s=13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 and 400 GeV, produced from decays of heavy bosons with masses between 125 and 1000 GeV, where the long-lived scalars decay into Standard Model fermions.

Search for top-quark decays t -> Hq with 36 fb(-1) of pp collision data at root s=13 TeV with the ATLAS detector

A search for flavour-changing neutral current decays of a top quark into an up-type quark (q = u, c) and the Standard Model Higgs boson, t Hq, is presented. The search is based on a dataset of pp collisions at = 13 TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider and corresponding to an integrated luminosity of 36.1 fb(-1). Two complementary analyses are performed to search for top-quark pair events in which one top quark decays into Wb and the other top quark decays into Hq, and target the Hbb and H (+-) decay modes, respectively.

Search for long-lived particles produced in pp collisions at root s=13 TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer

A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. The analysis in this paper uses 36.1 fb(-1) of proton-proton collision data at root s =13 TeV recorded in 2015-2016. The search employs techniques for reconstructing vertices of long-lived particles decaying into jets in the muon spectrometer exploiting a two-vertex strategy and a novel technique that requires only one vertex in association with additional activity in the detector that improves the sensitivity for longer lifetimes.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma