high pressure

A method to convert stand-alone OH fluorescence images into OH mole fraction

Due to the accessibility of the planar laser-induced fluorescence technique, images of OH fluorescence intensity are often used to study the structure of turbulent flames. However, there are differences between the measured OH fluorescence intensity and the actual OH mole fraction. These are often neglected because accurate conversion from fluorescence to mole fraction requires the combined knowledge of all major species mole fractions and temperature, which was rarely achieved in 2-D. Here, a new method to convert images of OH fluorescence intensity into OH mole fraction is proposed.

Absence of superconductivity in iron polyhydrides at high pressures

Recently, C. M. Pépin et al. [Science 357, 382 (2017)] reported the formation of several new iron polyhydrides FeHx at pressures in the megabar range and spotted FeH5, which forms above 130 GPa, as a potential high-Tc superconductor because of an alleged layer of dense metallic hydrogen. Shortly after, two studies by A. Majumdar et al. [Phys. Rev. B 96, 201107 (2017)] and A. G. Kvashnin et al. [J. Phys. Chem. C 122, 4731 (2018)] based on ab initio Migdal-Eliashberg theory seemed to independently confirm such a conjecture.

Superconductivity in sodalite-like yttrium hydride clathrates

Motivated by the discovery of near-room-temperature superconductivity in the sodalite-like clathrate hydride
LaH10, we report ab initio calculations of the superconducting properties of two closely related hydrides
YH6 and YH10, for which an even higher Tc has been predicted. Using fully anisotropic Migdal-Eliashberg theory with Coulomb corrections, we find almost isotropic superconducting gaps, resulting from a uniform distribution of the coupling over states of both Y and H sublattices. The Coulomb screening is rather weak, resulting in a Morel-Anderson pseudopotential

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma