HIV integrase

Discovery of dihydroxyindole-2-carboxylic acid derivatives as dual allosteric HIV-1 integrase and reverse transcriptase associated ribonuclease H inhibitors

The management of Human Immunodeficiency Virus type 1 (HIV-1) infection requires life-long treatment that is associated with chronic toxicity and possible selection of drug-resistant strains. A new opportunity for drug intervention is offered by antivirals that act as allosteric inhibitors targeting two viral functions (dual inhibitors). In this work, we investigated the effects of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) derivatives on both HIV-1 Integrase (IN) and Reverse Transcriptase associated Ribonuclease H (RNase H) activities.

Synthesis of potential HIV integrase inhibitors inspired by natural polyphenol structures

Drawing inspiration from the structural features of some natural polyphenols, the synthesis of two different model compounds as potential inhibitors of HIV integrase (IN) has been described. The former was characterised by a diketo acid (DKA) bioisostere, such as a ?-hydroxycarbonyl moiety, between two fragments containing aromatic groups, while in the latter an epoxide linked two polyoxygenated aromatic residues. The moieties present in the structures are thought to function by chelating divalent metal ions on the enzyme catalytic site.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma